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Tactile perception is essential for skilled robotic manipulation, yet

current systems are limited by low sensor resolution, incomplete modality
integration and insufficientinterpretation of complex tactile signals.

Here we present the Superior Tactile Sensor (SuperTac), abiomimetic,
multimodal tactile sensor inspired by the multispectral vision of pigeons.
SuperTacintegrates multispectral imaging (MIR to ultraviolet light) with
triboelectric and inertial sensing into a single 1-mm-thick light-field-
modulated skin comprising conductive polymer, fluorescent, reflective and
supporting layers. The sensor combines pressure-adaptive force sensing
with high-resolution (0.00545 mm? px ') and high-precision measurements
across force (0.06 N accuracy), position (0.4 mm accuracy), temperature
(0-90 °Crange), proximity (<15 cmrange) and vibration (0-60 Hz range).
Itachieves over 94% accuracy in discriminating texture, material, sliding,
collision and colour. To interpret these rich multimodal data, we developed
DOVE, an 8.5B-parameter tactile language model that enables sophisticated
understanding of tactile stimuli. This integrated sensing and interpretation

framework could bring robotic touch perception closer to human-like
capabilities, with potential applications in manufacturing, healthcare and

service robotics.

Touch is a fundamental sensory modality for robotic manipulation’,
human-robot interaction (HRI)? and extended reality’ applications.
Asembodied intelligence has advanced, the demand for sophisticated
tactile sensing capabilities has grown exponentially. High-resolution
multimodal tactile sensors, capable of detecting fine object details
while capturing diverse physical information, have emerged as a criti-
cal focus in both academic research and industrial development*”.
Tactile sensors based on electronic skin (e-skin) initially demon-
strated notable potential for multimodal sensing due to their versatile
functional materials®®. However, increasing spatial resolution and
sensing modalities in e-skin necessitates denser electrode arrays,
resulting in signal crosstalk and complex readout circuitry. In con-
trast, visuotactile sensing hasbeen proposed as an elegant alternative,

offering sub-millimetre spatial resolution through optical imaging
while naturally integrating with modern artificial intelligence frame-
works, including computer vision®, deep neural networks* and large
language models'®". Despite these advantages, extending visuotactile
sensing to incorporate multispectral and non-imaging modalities
presents substantial technical challenges. Although traditional visual
systems can readily integrate non-visible light sensors, this approach
is hindered in visuotactile systems due to constraints imposed by
the sensing skin. Although recent advancements have demonstrated
bimodal visuotactile sensors capable of simultaneous temperature-
force* and material-force" sensing, most implementations remain
confinedto the visible spectrum (Supplementary Tables1and 2). Con-
sequently, the development of truly multimodal visuotactile sensors

A full list of affiliations appears at the end of the paper. < e-mail: zxie@dlut.edu.cn; cwu@nus.edu.sg; xingeyu@cityu.edu.hk;

ding.wenbo@sz.tsinghua.edu.cn

Nature Sensors | Volume 1| January 2026 | 52-62

52


http://www.nature.com/NatSens
https://doi.org/10.1038/s44460-025-00006-y
http://orcid.org/0000-0001-5746-5894
http://orcid.org/0000-0003-3542-0593
http://orcid.org/0000-0003-1320-817X
http://orcid.org/0000-0002-0921-6356
http://orcid.org/0000-0003-0522-1171
http://orcid.org/0000-0002-0597-4512
http://crossmark.crossref.org/dialog/?doi=10.1038/s44460-025-00006-y&domain=pdf
mailto:zxie@dlut.edu.cn
mailto:cwu@nus.edu.sg
mailto:xingeyu@cityu.edu.hk
mailto:ding.wenbo@sz.tsinghua.edu.cn

Article

https://doi.org/10.1038/s44460-025-00006-y

Optic disk

Sensing skin Multimodal sensing system

Multispectral imaging perception

Retinal photoreceptor cells

330 nm 500 nm 700 nm

Multispectral imaging module

700 nm 940 nm 5.5 pm 14 pm

Non-imaging perception

Magnetic field receptor

==

— . o
Rhodopsin ﬂ."—’.‘.

Disc

oy
membrane

'_.',\ Cryptochrome ~ 7 |

-
N -
&% *

Fig. 1| Overview of the multimodal tactile sensing system. a, The structure
oftheretinain pigeons includes cones and rods. We drew inspiration from
their remarkable multispectral vision, along with specialized retinal molecules
for non-imaging perception, such as magnetic field detection. b, The overall
structure of the sensor comprises a sensing skin and a multimodal sensing
system. ¢, Multispectral imaging systems achieve visible, ultraviolet, NIR and
MIR spectral sensing.d,e, A triboelectric sensor (d) and an IMU (e) enhance the
sensing capability of the tactile sensor. f, SuperTac’s demonstration of sensing
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modalities and functions. Deploying sensors with a manipulator can enable the
sensing of ten functions. g, SuperTac, combined with the tactile language model
(DOVE), can be applied in object recognition, grasping and HRI. h, Comparison of
the resolution and functionality of current mainstream tactile sensors (data from
refs.4,7,9,12,16-31). Green shading indicates that the literature only designed a
single sensing module without an array structure. Yellow shading indicates that
avisuotactile sensing method was adopted. TENG, triboelectric nanogenerator;
UV, ultraviolet; VIS, visible. Panel a created with BioRender.com.

faces two primary obstacles: limitations in sensing skin design and a
restricted imaging bandwidth.

Inspired by the remarkable multispectral vision of pigeons
we introduce the Superior Tactile Sensor (SuperTac) (Fig. 1a,b and

13,14
y

Supplementary Videos 1and 2), an integrated multimodal high-reso-
lution (0.00545 mm? px™) tactile sensor that combines multispectral
imaging (Fig. 1c), triboelectric sensing (Fig. 1d) and inertial measure-
ment (Fig. 1e). At the heart of SuperTac is a miniaturized sensing unit
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(Supplementary Note 1and Supplementary Table 3) featuring light-field
modulation and multispectralimaging capabilities. The sensor employs
a transparency-adjustable multilayered sensing skin comprising a
poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)"
conductivelayer, anultravioletink fluorescent layer and asilver-powder-
coated reflective layer. This design enables different functional modes
across various spectra through light-field modulation. Additionally, an
integrated inertial measurement unit (IMU) provides complementary
accelerationand posture data. SuperTac achieves comprehensive sens-
ing capabilities, including force, texture, deformation, temperature,
sliding, material properties, distance, vibrations, collision detection
and colour recognition (Fig. 1f and Supplementary Video 3). A unique
feature of the sensor isits adjustableinternal air pressure, which allows
fordynamicadaptation of the force sensing range. Through deep learn-
ing integration, SuperTac shows exceptional performance: a force
measurement accuracy of 0.06 N, a position accuracy of 0.4 mm, a
temperature range of 0-90 °C, proximity detection, vibration sensing
from 0-60 Hz, and over 94% accuracy in texture, material, sliding, col-
lisionand colour classification. To showcase its practical applications,
we integrated SuperTac into a dexterous robotic hand and developed
DOVE, aspecialized tactile language model. DOVE accurately interprets
tactile information from manipulated objects, indicating the sensor’s
potential for advanced HRIand robotic manipulation tasks (Fig. 1g). This
integrated approach achieves excellent resolution and functionality
compared with existing solutions*”*'>'¢*! (Fig. 1h).

Bio-inspired design of the multimodal tactile
sensor

The vertebrateretina contains specialized photoreceptors—rods and
cones—with cones enabling colour vision. Unlike humans, pigeons
possess an additional type of cone cell that is sensitive to ultraviolet
wavelengths®, along with specialized retinal molecules for non-imaging
perception, such as magnetic field detection®. This enhanced visual
system enables pigeons to process complex environmental informa-
tionmore comprehensively. Drawing inspiration from these capabili-
ties, SuperTac combines multispectralimaging with triboelectric and
inertial sensing to expand the perceptual capabilities of visuotactile
sensors. Based on this design, through a single touch, the sensor can
obtaininformation about an object’s shape, texture, colour, tempera-
ture and material, as well as the force during contact.

Structural design and sensing mechanism
Visuotactile sensing, which utilizes vision for tactile perception®, has
become increasingly valuable for robotic grasping® and manipulation®®,
particularly givenits compatibility with foundation model frameworks,
such as the vision-language-action model®. Traditional visuotactile
sensors typically comprise sensing skin,imaging and lighting modules.
In contrast, SuperTac introduces an innovative design that integrates
multispectralimaging, triboelectric signal acquisition, IMU signal acqui-
sition and lighting modules into a unified multimodal sensing system,
greatly enhancing both functionality and integration. This integrated
design enables comprehensive environmental interaction through mul-
tiple sensing modalities (Fig. 2a). The system can simultaneously detect
force, texture, deformation, temperature, material properties, proximity,
sliding, pose, vibration and colour (Supplementary Tables1and 2), pro-
viding adetailed multisensory representation of physical interactions.
The sensor’s design combines multiple functional elements (Fig.
2b). The core innovative part is a multilayer transparent sensing skin
coupled withamultimodal sensing system capable of precise spectral
band detection, triboelectric signal acquisitionand IMU-based motion
sensing. To capture triboelectric signals, we developed a transparent
conductive layer based on PEDOT:PSSintegrated into the sensing skin.
Thedesignalsoincorporates an IMU for orientation and acceleration
sensing. These components are compactly integrated into afour-layer
printed circuitboard with aradius of 16 mm, housing the multispectral

imaging, triboelectric, IMU signal acquisition and lighting modules
(Supplementary Note 2 and Supplementary Figs.1-3).

Sensing skin

Theselectionand structure of sensing skin materials are optimized to
enhance SuperTac’s functionalities (Supplementary Note 3). The skin
comprises four layers: aconductive layer, areflective layer, afluorescent
layer and asupporting layer (Fig.2b and Supplementary Fig. 4), witha
thickness of only 1 mm (Supplementary Fig. 5). The conductive layer,
fabricated by screen printing transparent PEDOT:PSS ink on thermo-
plastic polyurethane (TPU) thin film, generates triboelectric signals
during object contact. PEDOT:PSS provides excellent transparency and
conductivity, whereas TPU offers exceptional stretchability, transpar-
ency and toughness (Supplementary Fig. 6). The combination ensures
both film transparency and stable triboelectric signal generation. The
electrode adoptsavortexline (PEDOT:PSS) design to provide auniform
signal. Based onthe triboelectric mechanism (Supplementary Note 4),
the conductive layer generates distinct electrical signals upon contact
with objects of varying electronegativities, enabling material-type
discrimination and proximity sensing (Supplementary Fig. 7).

Thereflective layer operates similarly to aone-way mirror (Fig. 2c
and Supplementary Figs.8and 9). Itstransparency is regulated by light
intensity on either side: on the bright side, reflected light dominates,
rendering the film opaque, whereas on the dark side, transmitted
light prevails, making the film transparent. This mechanism allows
independentimaging across different wavelengths by controlling the
light intensity in specific spectral bands.

The fluorescent layer employs ultraviolet light to control marker
visibility. These markers, visible in the ultraviolet spectrum but invis-
ible in the near-infrared (NIR) band, enable the sensor to alternate
between detection modes with and without markers (Supplementary
Fig. 4). This capability allows simultaneous deformation and slide
detection without compromising texture detection. When combined
with the multispectralimaging system, it captures ultraviolet markers
and NIR texture information.

The supporting layer is the base substrate of the sensing skin,
providing mechanical integrity and structural stability for the entire
multilayer assembly. Its main functions are to maintain the overall
shape and flexibility of the skin, ensure reliable integration and align-
ment of the other functionallayers (conductive, reflective and fluores-
cent) and protect the sensor from mechanical damage during repeated
deformations. Additionally, the supporting layer serves as a physical
barrier, isolating the functional layers from external contaminants
and environmental factors, thereby enhancing the durability and
longevity of the sensor. Unlike traditional acrylic-based designs, we
employ asilicone-based inflatable support structure. This design offers
several advantages: a larger deformation range for detailed object
contour representation; aforce sensing range (0-7 N) thatis adjustable
throughinternal air pressure control (Supplementary Fig.10); and an
improved thermal response due to its thinner profile. Additionally,
the silicone inflatable film addresses the limitations of mid-infrared
(MIR; 5.5-14.0 pm wavelength) temperature sensing, where tradi-
tional materials such as acrylic and standard glass cannot transmit
wavelengths above 5 um. This eliminates the need for costly, special
optical glass while maintaining performance. However, the pneumatic
supportstructure offers advantages such as adjustable pressure sens-
ing and enhanced deformation sensing but poses challenges related
to sealing, material ageing and repeatability. To address these issues,
weintegrated acompact air supply system, replaced latex with durable
silicone and utilized TPU film forimproved wear resistance, achieving
superior durability and consistent performance over 80,000 tests.

Multimodal sensing system
The multimodal sensing system integrates four modules: multispectral
imaging, triboelectric signal acquisition, IMU signal acquisition and
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Fig. 2| Structural design and sensing mechanism. a, Sensing modalities of
SuperTac.b, Structure of the sensing skin, imaging module and lighting module.
¢, SuperTacis in touch mode when the internal lighting module is turned on and
in vision mode when the internal lighting module is turned off. d, Tactile data are
captured when the sensor is in contact with an object. Shown are representative
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The error bars represent the maximum and minimum values of the error (n=35
independent experimental repetitions per data point).

lighting modules (Fig. 2b). The miniaturized multispectral imaging
moduleincludes an MIR camera and two cameras incorporating acom-
plementary metal-oxide semiconductor (CMOS)—one with low-pass
filtering and the other withbandpass filtering. The system covers four
spectral bands: ultraviolet (390 nm illumination and 450 nm fluores-
cence), visible (400-700 nm), NIR (940 nm) and MIR (5.5-14.0 pm)
(Supplementary Fig. 11). To prevent crosstalk, the tactile mode uses
ultraviolet fluorescence detection, whereas the visual mode captures
external visible light with the ultraviolet light-emitting diode (LED)
turned off (Fig. 2d).

MIR detection

For temperature measurement, we employ an MIR imaging camera
(MLX90640) with 24 x 32 resolution thatis capable of detecting wave-
lengths between 5.5and 14.0 pum and measuring temperatures from—-40
to300 °C. This camera captures thermal radiation emitted by objects,
enabling precise temperature mapping.

NIR detection

A CMOS unit paired with a 935-to 945-nm bandpass filter and lens pro-
vides precise NIR signal detection, with filter selection determined by
the wavelength of the LED light source.

Visible and ultraviolet light detection

A CMOS unit with a 700 nm low-pass filter and lens covers an imag-
ing range from 350-1,000 nm, encompassing ultraviolet, vis-
ible and NIR spectra. LED lighting adjustment enables selective
wavelength detection.

The lighting module is meticulously designed to support both
reflective and fluorescent layer functionalities. For fluorescent marker
detection, 390 nm LEDs excite the fluorescent layer, revealing marker
information. The ultraviolet fluorescent markers enable modality
switching for deformation, sliding and texture sensing, offering advan-
tages in three-dimensional (3D) reconstruction and sliding detection
withoutrelying on strict light control. When deactivated, the fluores-
centlayer becomes transparent, allowing external colour observation
(Fig. 2c). For texture sensing, 940 nm LEDs generate a strong internal
NIRlightsource, rendering the thin film opaque and enhancing surface
texture detection (Supplementary Fig.12). This light source also works
in conjunction with the NIR detection unit, providing stable illumina-
tion for precise signal detection (Supplementary Note 5).

For triboelectric signal acquisition, we use an ADA4505 chip oper-
atingatalkHzsampling frequency (Supplementary Table 4). The IMU
signalacquisition utilizes MPU6050, capturing 3D orientation angles
and acceleration data. This configuration enables comprehensive
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multimodal sensing while maintaining system compactness and inte-
gration, addressing the limitations of traditional visuotactile sensors.

SuperTac demonstrates comprehensive sensing capabilities
across multiple spectral bands and sensing modalities (Fig. 2d). In
the ultraviolet band, fluorescent markers enable precise tracking of
sliding and deformation through marker size and displacement meas-
urements (Supplementary Note 6, Supplementary Table 5 and Sup-
plementary Figs. 13-15). The visible spectrum provides object colour
information upon contact, whereas the NIR band captures texture and
contact-force data. MIRimaging enables temperature measurement,
complemented by triboelectric signals for material identification (Fig.
2e) and proximity sensing (Fig. 2f). Additionally, IMU-based collision
and vibration detection further enhance the system’s multimodal
sensing capabilities.

Performance characterization
To evaluate force and position sensing capabilities, we developed a
testing platform incorporating an ATI Gamma sensor as the ground
truth for force measurements (Fig. 3a). The evaluation utilized 48 probe
(Supplementary Fig.16) designs across three geometries (U, Vand poly-
gon shapes), collecting approximately 1,800 datasets per probe (Fig.
3b). Aforce sensing neural network (Fig. 3c) was developed based ona
U-Net architecture®, with ResNet48 (ref. 39) as the encoder to extract
features from RGB deformationimages captured by the sensor. A fully
connected layer was added to output the resultant force vector, and the
U-Net decoder generated a deformation mask. The mask was multiplied
by theresultant vector to produce aforce distribution map. The network
was trained and evaluated using 86,440 sets of deformation data col-
lected from 48 probe types (Fig. 3d), with a uniform sampling method
employed to ensure comprehensive coverage of the sensor surface
and accurately assess its force sensing performance. The dataset was
splitinto 70% for training and 30% for testing. Training was conducted
onaNVIDIA A6000 graphics processing unit using the L1loss function
and the AdamW optimizer, with a CosineAnnealingLR scheduler. The
network achieves a position detection mean squared error accuracy
0of 0.056 mm and a 3D force detection mean squared error accuracy of
0.0004 N, with anoverall position detection precision of around 0.4 mm
(Fig.3e)and aforceerror distribution of approximately 0.06 N (Fig. 3f),
demonstrating robust performance across all probe types and strong
generalizability (Supplementary Fig. 17). In addition, we conducted
comparative experiments using ultraviolet and NIR modalities over
80,000 contact events to evaluate force sensing accuracy. The results
showed that NIR consistently outperformed ultraviolet markers across
all evaluation metrics, confirming its superior accuracy and stability
in force sensing tasks (Supplementary Fig. 18). For 3D reconstruction
testing, we not only optimized the distribution of markers in simula-
tions butalso evaluated the reconstruction accuracy of different algo-
rithms. Through testing, our proposed method achieved an average
root mean squared error of 0.0892 and amean absolute error of 0.0375
(Supplementary Note 6). For surface characterization, along short-term
memory (LSTM) algorithm (Supplementary Note 7 and Supplementary
Fig.19) processed 150 sets of sliding and non-sliding data, achieving 97%
accuracyinsliding detection. Colour classification was evaluated across
six different colours, achieving 100% accuracy. Texture recognition
was tested on six 3D-printed textures (Supplementary Fig. 20) and six
common textures (Supplementary Fig. 21), demonstrating 98% accu-
racy (Fig.3g,j). Additionally, the sensor exhibited robust capabilitiesin
Braille sensing, as well as the perception of 0.07-mm-thick hair strands
(Supplementary Fig. 22). To verify the accuracy of Braille recognition,
we collected 200 samples for each of the 26 Braille letters, achieving
a classification accuracy of 100%, which demonstrates the sensor’s
exceptional texture sensing capabilities (Supplementary Fig. 23).
Temperature detection was validated across a range of 0-90 °C,
limited by the thermal resistance of the TPU film (Supplementary Figs.
24 and25and Supplementary Videos 4 and 5). The SuperTac canachieve

atemperature sensing accuracy of 0.25 °C after testing and calibration
and remains unaffected by ambient temperature variations within the
28-50 °C range. Heating induced by ultraviolet radiation causes only
aminimal surface temperature change of 0.2 °C, ensuring negligible
interference with MIR-based temperature measurements (Supplemen-
tary Note 8 and Supplementary Fig. 26).

The triboelectric sensing capability of SuperTac was compre-
hensively evaluated under diverse conditions, including ten different
materials, seven contact-surface geometries, 15 contact speeds, three
contact angles and five pressure levels (Supplementary Note 9 and
Supplementary Figs. 27-29). Controlled experiments demonstrated
robust classification performance in all situations, achieving 97%
accuracy for contact angles, 99% accuracy for pressure levels, 96%
accuracy for velocities and 95% accuracy for contact shapes, with an
overall 95% accuracy across all conditions (Fig. 3k). A triboelectric
signal acquisition platform was developed (Supplementary Fig. 30)
tofacilitate detailed signal analysis, and a3.8 h durability test revealed
consistently stable signal output (Supplementary Fig. 31). Further-
more, by employing advanced signal-filtering techniques and neural
network classification, the triboelectric signals enabled proximity
sensing within arange of 0-15 cm, depending on the material proper-
ties, underscoring the versatility and reliability of SuperTacin diverse
sensing applications.

Vibration detection capabilities were validated using a custom
platform (Supplementary Fig. 32), demonstrating accurate frequency
recognition within the range of 0-60 Hz (Fig. 3i and Supplementary
Fig. 33). For collision detection, we analysed 150 sets of IMU signals
from collision and non-collision scenarios, achieving 94% classification
accuracy (Fig. 31and Supplementary Fig. 34).

Integration and applications

Robotic hand implementation

To demonstrate SuperTac’s capabilities, we integrated it into two
robotic platforms: a three-finger dexterous hand and a parallel grip-
per (Supplementary Video 6 and Supplementary Figs. 35and 36). The
dexterous hand features ten degrees of freedom with servo motor
actuation at each joint. SuperTac is mounted in the palm, enabling
comprehensive object-property sensing during grasping opera-
tions. For the parallel gripper configuration, SuperTac s installed on
one side, facilitating stable object manipulation through integrated
visual detection, contact force sensing, slip detection and collision
detection algorithms.

Multimodal tactile language model

To enable advanced tactile information processing, we developed
DOVE (Supplementary Note 10 and Supplementary Fig. 37), a multi-
modal tactile language model built on a pre-trained large language
model (Fig. 4d). DOVE fuses multimodal tactileinputs and language to
characterize object properties, reason over tactile differences between
object pairsandinfer an object’s type and function. Specifically, DOVE
can process triboelectric, temperature, colour and texture inputs to
generate rich descriptions such as “yellow, room temperature, with a
textured, raised, metallic surface” (Fig. 4d and Supplementary Video
7). Whenitreceives tactile feedback from two objects, DOVE produces
relational reasoning statements (for example, “The two objects share
similar colours, temperatures and textures, but differ in material, so
they are different.”). DOVE also associates tactile impressions with
semantic knowledge for reasoning (for example, “PET is commonly
used for food containers. Its yellow colour suggests visibility or citrus-
relateditems. Thisis probably abeverage bottle used for daily consump-
tion.”). To explore the impact of network structure on the perception
capabilities of DOVE, we further investigated the effects of the hidden
dimensions and activation functionsin the projection layer. The experi-
mental results demonstrated that changes in hidden dimensions had
minimal impact on performance, whereas the Gaussian error linear
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ABS, acrylonitrile butadiene styrene; PET, polyethylene terephthalate;

PLA, polylacticacid.
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infer which actions | should
take for them individually.

This object is made of rubber.
Rubber isn't usually
recyclable, so it should go in
the general waste bin.

It is made of plastic and has a
smooth, curved surface. This
appears to be a plastic drink
bottle. Since it is recyclable, it
should be placed in the
recycling bin.

This object is made of
polyurethane foam and has a
slightly rough or bumpy
surface. | think it’s a dish
sponge, so I'll place it back
neatly on the table.
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After touch, | feel that the object is
yellow in colour and it is at room
temperature. The object has a
textured surface featuring a
uniform pattern of large, raised
bumps or scales that cover the
entire surface. With triboelectric
signal, | think the object is made
of metal.

& Can you help me clean up the table?

This object is made of metal
with a flat, smooth surface. It
might be some kind of
container and it still appears
useful. I'll simply place it back
on the table.

It's made of fabric and it
might be clothes or a towel.
Since it could still be useful,
I'll place it back on the table.

I've finished checking and
arranging all of the items. The
table is now clean and
organized!

o!

Fig. 4 | Design and application of the tactile language model. a, Schematic

of theintegration of SuperTac with DOVE in HRI. b, Stable object grasping by
combining external vision with contact, slide and collision sensing. ¢, Fusion of
material, texture, colour and temperature information, combined with atactile
language model for tactile information understanding. d, Schematic of our

tactile language model and its application to tactile information understanding.
e, Images and language from two experiments in HRI utilizing the tactile
language model. The tactile language model assists robots in decision-making
by providing detailed analyses and reasoning of tactile data. CLIP, contrastive
language-image pre-training.
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unit activation function notably outperformed the rectified linear
unit function, ensuring effective alignment and fusion of multimodal
features (Supplementary Note 11 and Supplementary Table 6).

Enhanced HRI

We further demonstrated the system’s HRI capabilities across four
experimental scenarios (Fig. 4e, Supplementary Notes 12-14, Sup-
plementary Table 7, Supplementary Videos 8-12 and Supplementary
Figs.38and 39).Inthefirst scenario, the systemidentifiesand selectsa
metallic cup withasmoothsurface. Inthe second scenario, the system
follows user instructions to locate a cup with specific characteristics
(thatis, lettering and aroughsurface). GPT-40 orchestrates the interac-
tion by directing visualidentification and physicalinteraction witheach
cup, whereas DOVE processes the tactile feedback. Inthe third scenario,
DOVEreceives areference object viatouch and retrieves another that
matchesaspecified colour by reasoningjointly over texture and colour
cues. In the fourth scenario, DOVE infers cluttered tabletop objects’
functions as reusable, recyclable or general waste based on tactile
feedback and generates natural language justifications for each deci-
sion. The system continues evaluation until it finds amatching object
or determines that no suitable matches exist.

The integration of comprehensive tactile sensing, language-
based interpretation and visual processing represents a substantial
advancement towards human-like robotic perception and interac-
tion. By enabling robots to process and respond to multimodal sen-
sory information in a manner akin to human perceptual capabilities,
this approach paves the way for more intuitive and effective human-
robot collaboration.

Conclusions

Traditional e-skin-based tactile sensors continue to face notable chal-
lengesinresolution, homogeneity and stability. Although visuotactile
sensors offer promising solutions through advanced imaging tech-
niques, their multimodal sensing capabilities have been limited by
constraints in sensing skin design and imaging bandwidth. Our work
addresses these fundamental limitations through a light-field-mod-
ulated sensing skin combined with multispectral imaging, enabling
high-resolution multimodal sensing. The sensor achieves remarkable
performance metrics, including 98% texture detectionaccuracy, 0.06 N
3D force detection accuracy in the NIR band, 97% sliding detection
accuracy in the ultraviolet band and 100% colour detection accuracy
inthevisible band. By incorporating non-imaging perceptioninspired
by pigeon magnetic field sensing, we further extend the sensor’s capa-
bilities to material detection (95% accuracy), collision detection (94%
accuracy) and vibration detection (0-60 Hz range), all without com-
promising imaging quality or introducing electrode crosstalk issues.

Theinterpretation of heterogeneoustactile information through
foundation models presents unique challenges. DOVE—our multi-
modal tactile language model—addresses these challenges through
a unified input representation approach, which enhances scalabil-
ity and adaptability across diverse sensor configurations. However,
this approach reveals important trade-offs. Although transforming
sequential data into images has proven effective for certain tasks, it
may not fully capture the temporal characteristics inherent in tactile
signals. Alternative approaches, such as time-series encoders, might
better preserve temporal features but reintroduce challenges related
to embedding heterogeneity. Striking the optimal balance between
scalability and effectiveness remains acrucial area for future research
and practicalimplementation.

Several promising directions have emerged for extending SuperT-
ac’s capabilities. Miniaturization of the sensor could enable fingertip
installation, greatly advancing robotic in-hand manipulation capa-
bilities. Additionally, DOVE’s modality-agnostic framework, which
converts various input modalities into image representations, could
be adapted for different sensor configurations and applications. Future

workwill focus onadvancing low-power decoding chips and exploring
highly integrated packaging solutions to further reduce the sensor’s
size while addressing challenges in heat dissipation and system stabil-
ity. Work will additionally focus on optimizing DOVE across diverse sen-
sor designs and application-specific datasets, to enhance its versatility
and robustness. These developments aim to bridge the gap between
robotic and human-like perception capabilities, paving the way for
more intuitive and effective HRI.

Methods

Allof the experiments were conducted using Python 3.8.20in a Conda
environment. All of the analyses were performed on Ubuntu 20.04
with four NVIDIARTX A6000 graphics processing units (CUDA 11.3).

Fabrication of the sensing skin

The sensing skin was fabricated using amulti-step process (Supplemen-
tary Fig. 40, Supplementary Note 15and Supplementary Table 8). First,
transparent silicone was mixed and poured into acrylic moulds, which
provided asmoother surface finish compared with 3D-printed moulds.
After heating, the silicone was cured to form the supporting layer. For
the fluorescent layer, a scraping method was employed, using a steel
mesh as a mask to spread fluorescent ink over the surface. To prevent
unevenness caused by ink buildup, an additional layer of transparent
silicone was applied using spin-coating. The reflective layer was created
by mixing silver powder with transparentsilicone, which was then spin-
coated onto the fluorescent layer. For the conductive layer, conductive
ink was screen printed onto a TPU surface and heated for 60 min to
complete the layer. Finally, the conductive layer was attached to the
translucent layer, finalizing the sensing skin. Although the integration of
fluorescent markersintroduces additional complexity, the standardized
design ensures low cost (less than US$1) and high durability. The outer
sensingskin, made of TPU film, which is commonly used in automotive
and smartphone protective applications, exhibits exceptional wear and
corrosionresistance. Fluorescent markers showed no photobleaching
after one week of continuous ultraviolet exposure, ensuring stability
(Supplementary Fig. 41). These features demonstrate a thoughtful
balance between functional enhancements and cost-effectiveness.

Assembly and connection of SuperTac

The sensor was designed with a modular structure (Supplementary
Note 16 and Supplementary Fig. 42) divided into three sections: upper,
middleand lower. The upper and lower sections are made of aluminium
alloy for high heat resistance and mechanical strength, whereas the
middle sectionis constructed from transparent acrylic to ensure even
diffusion of LED light onto the sensing skin. Threaded joints are used to
connectthe modules, allowing for easy disassembly. To address poten-
tial overheating during prolonged full-load operation, the SuperTac
system incorporates a detachable magnetic cooling fan powered via
contact-based pogo pins and aligned using N52-grade magnets, ena-
bling quick removal for maintenance, and effectively reducing the
stabilized temperature by 18.4 °C during extended high-load operation,
asdemonstrated through time-temperature comparison experiments
(Supplementary Note 17 and Supplementary Figs. 43-46).

The SuperTacsystemadoptsaUSB3.1Gen1protocol for datacom-
munication, facilitating robust and high-speed transmission across
all sensing and communication modules (Supplementary Note 18
and Supplementary Fig. 47). To ensure stable operation, the system
is equipped with an optimized power architecture that supports all
modules under full-load conditions, with a maximum power consump-
tion of 4.5 W (Supplementary Note 19 and Supplementary Figs. 48 and
49). These design choices enhance the practicality and scalability of the
SuperTacsysteminreal-world applications. Inaddition, we designed a
user interface that simultaneously displays signalsincluding MIR, NIR,
visible and ultraviolet light, triboelectric signals, posture information
and acceleration data (Supplementary Fig. 50).
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Image classification network design and training

For image-based tactile inputs, a ResNet18 backbone was cascaded
with a multilayer perceptron (MLP) to extract task-relevant features
and perform classification. The model processed batches of 128 x 128
visuotactile images, generating intermediate feature maps through
ResNet, which were further processed via max-pooling and passed
throughthe MLP classifier. The network was trained end to end for four
tasks: colour, texture, temperature and material classification. Tribo-
electric signals were filtered to remove high-frequency components
and visualized as curves, which were stored asimages. The dataset was
splitinto 80% for training, 10% for validation and 10% for testing. The
model was trained using the Adam optimizer with a learning rate of
1x10*and abatch size of 128, alongside a step scheduler that reduced
thelearning rate by 0.9 every ten validation steps.

Sequential signal classification network design and training
Forsequential inputs (for example, IMU data and visuotactile videos),
an LSTM network was employed as the backbone to process the tem-
poral flow of information (Supplementary Fig. 19). Low-dimensional
data, such as IMU readings, were processed using a two-layer MLP,
whereas spatial-structural data, such as videos, were processed using a
pre-trained ResNet18. The LSTM updated its hidden state sequentially
and output task-oriented information, which was passed through an
MLP classifier for final prediction. For IMU data, the model was trained
end to end for collision detection, whereas for sliding detection, only
the LSTM and MLP classifiers were trained. The dataset was split into
80% for training, 10% for validation and 10% for testing. Training used
the AdamW optimizer with a learning rate of 1 x 10~ and a batch size
of 128, alongside a step-based learning-rate scheduler. After testing,
the classification algorithms based on ResNet and LSTM have asingle
prediction time within 6 ms, meeting real-time requirements (Sup-
plementary Note 20 and Supplementary Table 9).

Effects of air pressure and object hardness on sensor
perception

Weinvestigated the impact of internal air pressure onthe tactile sensing
performance of the sensor, focusing on its ability to perceive flexible
objectsanditsaccuracyinforce sensing, texture recognition and slid-
ing detection. Duringtesting, five pressurelevels (1.2,3.0,4.0, 6.0 and
7.0 kPa) were selected for the force sensing experiments, whereas three
pressure levels (3.0, 5.0 and 7.0 kPa) were chosen for the texture rec-
ognitionandsliding detection experiments. The experimental results
demonstrated that variations in air pressure had minimal impact on the
accuracy of force sensing, texture recognition and sliding detection.
Notably, texture recognition and sliding detection achieved 100% accu-
racy across all pressure conditions. A slight decrease in force sensing
accuracy was observed at high pressure (7 kPa), but it remained within
anacceptable range. Overall, the system exhibited stable and reliable
performance under varying pressure conditions (Supplementary Note
21and Supplementary Figs. 51and 52).

Extensive testing of the SuperTac system was conducted on soft
and liquid-containing objects, including probes made of diverse mate-
rials (polylacticacid, cloth, plastic, paper, polyethylene terephthalate
or silicone) and objects with flexible or liquid-containing textures.
Although the softness of objects slightly impacted force sensing accu-
racy, the performance significantly improved after supplementing
the dataset with 500 flexible object samples (Supplementary Note 22
and Supplementary Fig. 53). The system achieved 100% accuracy in
texture recognition and sliding detection (Supplementary Figs. 54 and
55). Furthermore, the inflatable structure of SuperTac demonstrated
superior texture and contour sensing capabilities compared with Gel-
Sight Mini, highlighting its advantages in handling complex surfaces
(Supplementary Fig. 56). Additionally, simulation results using finite
element analysis revealed that the system maintains reliable contour
recognition for objects with elastic moduli above 1 MPa, providing

theoretical guidance for practical applications (Supplementary Note
23 and Supplementary Fig. 57).

Tactile language model design and training

To enable comprehensive understanding and reasoning over multi-
modal tactile data and language, a large tactile language model was
trained ona processed datasetintegrating colour, texture, temperature
and triboelectric data, augmented with synthetic tactile language
question and answer pairs (Supplementary Figs. 37 and 39). The train-
ing and testing data for the SuperTac system were constructed using
tactile data spanning six colours, three temperature conditions, ten
material types and six surface textures, with multimodal questionand
answer pairs generated by GPT-4 and rule-based scripts to integrate
tactileinformation with natural language descriptions (Supplementary
Note 24). The training involved three stages: encoder pre-training,
embedding alignment and model fine-tuning. Pre-trained contrastive
language-image pre-training models*® were used to extract image
features, with an MLP classifier attached for end-to-end classification.
After fine-tuning, the classifiers were removed and a projection layer
was added for embedding alignment. Finally, the projection layer
and language backbone (Vicuna*') were fine-tuned using LORA**. The
total parameters of the four contrastive language-image pre-training
encoders and language backbone reached 8.6 billion. Training used the
AdamW optimizer with a cosine annealing schedule, achieving robust
performance across all modalities (Supplementary Note 25 and Sup-
plementary Tables 10-12).

Software availability

Allof the experiments were conducted using Python 3.8.20inaConda
environment. All of the analyses were performed on Ubuntu 20.04
with four NVIDIA RTX A6000 graphics processing units (CUDA 11.3).

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The data that support the findings of this study are available
at https://cloud.tsinghua.edu.cn/d/f6abfcf5845a42018e2a/
files/?p = %2FData%2Fdataset.zip.

Code availability

We have open sourced the codebase for DOVE at https://github.com/
wutl9/DOVE. Future updates and new releases will also be available
atthislink.
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For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

D The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[ ] Adescription of all covariates tested

|:| A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
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|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

D For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

X

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|:| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

X X X

|:| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  Custom Python 3.8 code was used to collect the data in this study.

Data analysis Custom Python 3.8 code was utilized for data analysis in this study, while the finite element analysis (FEA) software ABAQUS 2019 was
employed to simulate the mechanical response of the tactile sensor. Additional packages used in python environment are list as follows:
accelerate==1.0.1, bitsandbytes==0.45.5, certifi==2025.4.26, charset-normalizer==3.4.2, filelock==3.16.1, fsspec==2025.3.0, hf-xet==1.1.2,
huggingface-hub==0.32.3, idna==3.10, Jinja2==3.1.6, MarkupSafe==2.1.5, mpmath==1.3.0, natsort==8.4.0, networkx==3.1, numpy==1.24.4,
nvidia-cublas-cu12==12.1.3.1, nvidia-cuda-cupti-cu12==12.1.105, nvidia-cuda-nvrtc-cu12==12.1.105, nvidia-cuda-runtime-cu12==12.1.105,
nvidia-cudnn-cu12==9.1.0.70, nvidia-cufft-cu12==11.0.2.54, nvidia-curand-cu12==10.3.2.106, nvidia-cusolver-cu12==11.4.5.107, nvidia-
cusparse-cul2==12.1.0.106, nvidia-nccl-cu12==2.20.5, nvidia-nvjitlink-cu12==12.9.41, nvidia-nvtx-cu12==12.1.105, opencv-
python==4.11.0.86, packaging==25.0, peft==0.2.0, pillow==10.4.0, protobuf==5.29.5, psutil==7.0.0, python-dotenv==1.0.1, PyYAML==6.0.2,
regex==2024.11.6, requests==2.32.3, safetensors==0.5.3, sentencepiece==0.2.0, sympy==1.13.3, tokenizers==0.13.3, torch==2.4.1,
torchvision==0.19.1, tqdm==4.67.1, transformers==4.31.0, triton==3.0.0, typing_extensions==4.13.2, urllib3==2.2.3

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.




Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

Codes used for training and evaluating DOVE, the proposed tactile language model, are publicly available at https://github.com/wut19/DOVE

.The corresponding multimodal tactile-language dataset supporting DOVE is available at https://cloud.tsinghua.edu.cn/d/f6abfcf5845a42018e2a/files/?p=%2FData%
2Fdataset.zip. Codes and datasets used in other experimental categories (e.g., classification or comparative baselines) are not publicly released due to institutional
and third-party restrictions, but are available from the corresponding author upon reasonable request.

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender N/A. No human participants, human data, or human biological materials were involved in this study.

Reporting on race, ethnicity, or  N/A. No human participants, human data, or human biological materials were involved in this study.
other socially relevant

groupings

Population characteristics N/A. No human participants, human data, or human biological materials were involved in this study.
Recruitment N/A. No human participants, human data, or human biological materials were involved in this study.
Ethics oversight N/A. No human participants, human data, or human biological materials were involved in this study.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size To ensure that the data volume met the experimental requirements, we collected 2,160, 2,250, 2,160, and 10,500 raw samples for color,
temperature, texture and material, respectively, yielding a combinatorial space of 1x10"14 unique instances. We trained DOVE on 30,000
synthetic combinations and evaluated it on newly generated 1000 samples.

Data exclusions  No data were excluded from analysis.

Replication All attempts at replication were successful.

Randomization  No human or animal participants were involved; the study concerns a tactile sensor evaluated with different probes and test objects.
Randomization was therefore not relevant to the study.

Blinding No human or animal participants were involved; therefore, conventional investigator blinding to participant group allocation is not applicable.
Data acquisition was automated via predefined scripts that controlled probe motion, normal force targets, and sampling timing.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems

Methods

Novel plant genotypes  N/A

Authentication N/A
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