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Biomimetic multimodal tactile sensing 
enables human-like robotic perception
 

Shoujie Li1,15, Tong Wu1,15, Jianle Xu1,15, Yan Huang1, Zongwen Zhang2,3, 
Hongfa Zhao1, Qinghao Xu    1, Zihan Wang4, Linqi Ye5, Yang Yang6, Chuqiao Lyu1, 
Shilong Mu1,7, Xueqian Wang    1, Zhaoqian Xie    2,3  , Changsheng Wu    8,9,10,11  , 
Xinge Yu    12,13,14   & Wenbo Ding    1 

Tactile perception is essential for skilled robotic manipulation, yet 
current systems are limited by low sensor resolution, incomplete modality 
integration and insufficient interpretation of complex tactile signals. 
Here we present the Superior Tactile Sensor (SuperTac), a biomimetic, 
multimodal tactile sensor inspired by the multispectral vision of pigeons. 
SuperTac integrates multispectral imaging (MIR to ultraviolet light) with 
triboelectric and inertial sensing into a single 1-mm-thick light-field-
modulated skin comprising conductive polymer, fluorescent, reflective and 
supporting layers. The sensor combines pressure-adaptive force sensing 
with high-resolution (0.00545 mm2 px−1) and high-precision measurements 
across force (0.06 N accuracy), position (0.4 mm accuracy), temperature 
(0–90 °C range), proximity (<15 cm range) and vibration (0–60 Hz range). 
It achieves over 94% accuracy in discriminating texture, material, sliding, 
collision and colour. To interpret these rich multimodal data, we developed 
DOVE, an 8.5B-parameter tactile language model that enables sophisticated 
understanding of tactile stimuli. This integrated sensing and interpretation 
framework could bring robotic touch perception closer to human-like 
capabilities, with potential applications in manufacturing, healthcare and 
service robotics.

Touch is a fundamental sensory modality for robotic manipulation1, 
human–robot interaction (HRI)2 and extended reality3 applications. 
As embodied intelligence has advanced, the demand for sophisticated 
tactile sensing capabilities has grown exponentially. High-resolution 
multimodal tactile sensors, capable of detecting fine object details 
while capturing diverse physical information, have emerged as a criti-
cal focus in both academic research and industrial development4,5.

Tactile sensors based on electronic skin (e-skin) initially demon-
strated notable potential for multimodal sensing due to their versatile 
functional materials6–8. However, increasing spatial resolution and 
sensing modalities in e-skin necessitates denser electrode arrays, 
resulting in signal crosstalk and complex readout circuitry. In con-
trast, visuotactile sensing has been proposed as an elegant alternative, 

offering sub-millimetre spatial resolution through optical imaging 
while naturally integrating with modern artificial intelligence frame-
works, including computer vision9, deep neural networks4 and large 
language models10,11. Despite these advantages, extending visuotactile 
sensing to incorporate multispectral and non-imaging modalities 
presents substantial technical challenges. Although traditional visual 
systems can readily integrate non-visible light sensors, this approach 
is hindered in visuotactile systems due to constraints imposed by 
the sensing skin. Although recent advancements have demonstrated 
bimodal visuotactile sensors capable of simultaneous temperature-
force4 and material-force12 sensing, most implementations remain 
confined to the visible spectrum (Supplementary Tables 1 and 2). Con-
sequently, the development of truly multimodal visuotactile sensors 
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Supplementary Videos 1 and 2), an integrated multimodal high-reso-
lution (0.00545 mm2 px−1) tactile sensor that combines multispectral 
imaging (Fig. 1c), triboelectric sensing (Fig. 1d) and inertial measure-
ment (Fig. 1e). At the heart of SuperTac is a miniaturized sensing unit 

faces two primary obstacles: limitations in sensing skin design and a 
restricted imaging bandwidth.

Inspired by the remarkable multispectral vision of pigeons13,14, 
we introduce the Superior Tactile Sensor (SuperTac) (Fig. 1a,b and 
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Fig. 1 | Overview of the multimodal tactile sensing system. a, The structure 
of the retina in pigeons includes cones and rods. We drew inspiration from 
their remarkable multispectral vision, along with specialized retinal molecules 
for non-imaging perception, such as magnetic field detection. b, The overall 
structure of the sensor comprises a sensing skin and a multimodal sensing 
system. c, Multispectral imaging systems achieve visible, ultraviolet, NIR and 
MIR spectral sensing. d,e, A triboelectric sensor (d) and an IMU (e) enhance the 
sensing capability of the tactile sensor. f, SuperTac’s demonstration of sensing 

modalities and functions. Deploying sensors with a manipulator can enable the 
sensing of ten functions. g, SuperTac, combined with the tactile language model 
(DOVE), can be applied in object recognition, grasping and HRI. h, Comparison of 
the resolution and functionality of current mainstream tactile sensors (data from 
refs. 4,7,9,12,16–31). Green shading indicates that the literature only designed a 
single sensing module without an array structure. Yellow shading indicates that 
a visuotactile sensing method was adopted. TENG, triboelectric nanogenerator; 
UV, ultraviolet; VIS, visible. Panel a created with BioRender.com.
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(Supplementary Note 1 and Supplementary Table 3) featuring light-field 
modulation and multispectral imaging capabilities. The sensor employs 
a transparency-adjustable multilayered sensing skin comprising a 
poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)15 
conductive layer, an ultraviolet ink fluorescent layer and a silver-powder-
coated reflective layer. This design enables different functional modes 
across various spectra through light-field modulation. Additionally, an 
integrated inertial measurement unit (IMU) provides complementary 
acceleration and posture data. SuperTac achieves comprehensive sens-
ing capabilities, including force, texture, deformation, temperature, 
sliding, material properties, distance, vibrations, collision detection 
and colour recognition (Fig. 1f and Supplementary Video 3). A unique 
feature of the sensor is its adjustable internal air pressure, which allows 
for dynamic adaptation of the force sensing range. Through deep learn-
ing integration, SuperTac shows exceptional performance: a force 
measurement accuracy of 0.06 N, a position accuracy of 0.4 mm, a 
temperature range of 0–90 °C, proximity detection, vibration sensing 
from 0–60 Hz, and over 94% accuracy in texture, material, sliding, col-
lision and colour classification. To showcase its practical applications, 
we integrated SuperTac into a dexterous robotic hand and developed 
DOVE, a specialized tactile language model. DOVE accurately interprets 
tactile information from manipulated objects, indicating the sensor’s 
potential for advanced HRI and robotic manipulation tasks (Fig. 1g). This 
integrated approach achieves excellent resolution and functionality 
compared with existing solutions4,7,9,12,16–31 (Fig. 1h).

Bio-inspired design of the multimodal tactile 
sensor
The vertebrate retina contains specialized photoreceptors—rods and 
cones—with cones enabling colour vision. Unlike humans, pigeons 
possess an additional type of cone cell that is sensitive to ultraviolet 
wavelengths32, along with specialized retinal molecules for non-imaging 
perception, such as magnetic field detection33. This enhanced visual 
system enables pigeons to process complex environmental informa-
tion more comprehensively. Drawing inspiration from these capabili-
ties, SuperTac combines multispectral imaging with triboelectric and 
inertial sensing to expand the perceptual capabilities of visuotactile 
sensors. Based on this design, through a single touch, the sensor can 
obtain information about an object’s shape, texture, colour, tempera-
ture and material, as well as the force during contact.

Structural design and sensing mechanism
Visuotactile sensing, which utilizes vision for tactile perception34, has 
become increasingly valuable for robotic grasping35 and manipulation36, 
particularly given its compatibility with foundation model frameworks, 
such as the vision–language–action model37. Traditional visuotactile 
sensors typically comprise sensing skin, imaging and lighting modules. 
In contrast, SuperTac introduces an innovative design that integrates 
multispectral imaging, triboelectric signal acquisition, IMU signal acqui-
sition and lighting modules into a unified multimodal sensing system, 
greatly enhancing both functionality and integration. This integrated 
design enables comprehensive environmental interaction through mul-
tiple sensing modalities (Fig. 2a). The system can simultaneously detect 
force, texture, deformation, temperature, material properties, proximity, 
sliding, pose, vibration and colour (Supplementary Tables 1 and 2), pro-
viding a detailed multisensory representation of physical interactions.

The sensor’s design combines multiple functional elements (Fig. 
2b). The core innovative part is a multilayer transparent sensing skin 
coupled with a multimodal sensing system capable of precise spectral 
band detection, triboelectric signal acquisition and IMU-based motion 
sensing. To capture triboelectric signals, we developed a transparent 
conductive layer based on PEDOT:PSS integrated into the sensing skin. 
The design also incorporates an IMU for orientation and acceleration 
sensing. These components are compactly integrated into a four-layer 
printed circuit board with a radius of 16 mm, housing the multispectral 

imaging, triboelectric, IMU signal acquisition and lighting modules 
(Supplementary Note 2 and Supplementary Figs. 1–3).

Sensing skin
The selection and structure of sensing skin materials are optimized to 
enhance SuperTac’s functionalities (Supplementary Note 3). The skin 
comprises four layers: a conductive layer, a reflective layer, a fluorescent 
layer and a supporting layer (Fig. 2b and Supplementary Fig. 4), with a 
thickness of only 1 mm (Supplementary Fig. 5). The conductive layer, 
fabricated by screen printing transparent PEDOT:PSS ink on thermo-
plastic polyurethane (TPU) thin film, generates triboelectric signals 
during object contact. PEDOT:PSS provides excellent transparency and 
conductivity, whereas TPU offers exceptional stretchability, transpar-
ency and toughness (Supplementary Fig. 6). The combination ensures 
both film transparency and stable triboelectric signal generation. The 
electrode adopts a vortex line (PEDOT:PSS) design to provide a uniform 
signal. Based on the triboelectric mechanism (Supplementary Note 4), 
the conductive layer generates distinct electrical signals upon contact 
with objects of varying electronegativities, enabling material-type 
discrimination and proximity sensing (Supplementary Fig. 7).

The reflective layer operates similarly to a one-way mirror (Fig. 2c 
and Supplementary Figs. 8 and 9). Its transparency is regulated by light 
intensity on either side: on the bright side, reflected light dominates, 
rendering the film opaque, whereas on the dark side, transmitted 
light prevails, making the film transparent. This mechanism allows 
independent imaging across different wavelengths by controlling the 
light intensity in specific spectral bands.

The fluorescent layer employs ultraviolet light to control marker 
visibility. These markers, visible in the ultraviolet spectrum but invis-
ible in the near-infrared (NIR) band, enable the sensor to alternate 
between detection modes with and without markers (Supplementary 
Fig. 4). This capability allows simultaneous deformation and slide 
detection without compromising texture detection. When combined 
with the multispectral imaging system, it captures ultraviolet markers 
and NIR texture information.

The supporting layer is the base substrate of the sensing skin, 
providing mechanical integrity and structural stability for the entire 
multilayer assembly. Its main functions are to maintain the overall 
shape and flexibility of the skin, ensure reliable integration and align-
ment of the other functional layers (conductive, reflective and fluores-
cent) and protect the sensor from mechanical damage during repeated 
deformations. Additionally, the supporting layer serves as a physical 
barrier, isolating the functional layers from external contaminants 
and environmental factors, thereby enhancing the durability and 
longevity of the sensor. Unlike traditional acrylic-based designs, we 
employ a silicone-based inflatable support structure. This design offers 
several advantages: a larger deformation range for detailed object 
contour representation; a force sensing range (0–7 N) that is adjustable 
through internal air pressure control (Supplementary Fig. 10); and an 
improved thermal response due to its thinner profile. Additionally, 
the silicone inflatable film addresses the limitations of mid-infrared 
(MIR; 5.5–14.0 µm wavelength) temperature sensing, where tradi-
tional materials such as acrylic and standard glass cannot transmit 
wavelengths above 5 µm. This eliminates the need for costly, special 
optical glass while maintaining performance. However, the pneumatic 
support structure offers advantages such as adjustable pressure sens-
ing and enhanced deformation sensing but poses challenges related 
to sealing, material ageing and repeatability. To address these issues, 
we integrated a compact air supply system, replaced latex with durable 
silicone and utilized TPU film for improved wear resistance, achieving 
superior durability and consistent performance over 80,000 tests.

Multimodal sensing system
The multimodal sensing system integrates four modules: multispectral 
imaging, triboelectric signal acquisition, IMU signal acquisition and 
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lighting modules (Fig. 2b). The miniaturized multispectral imaging 
module includes an MIR camera and two cameras incorporating a com-
plementary metal-oxide semiconductor (CMOS)—one with low-pass 
filtering and the other with bandpass filtering. The system covers four 
spectral bands: ultraviolet (390 nm illumination and 450 nm fluores-
cence), visible (400–700 nm), NIR (940 nm) and MIR (5.5–14.0 µm) 
(Supplementary Fig. 11). To prevent crosstalk, the tactile mode uses 
ultraviolet fluorescence detection, whereas the visual mode captures 
external visible light with the ultraviolet light-emitting diode (LED) 
turned off (Fig. 2d).

MIR detection
For temperature measurement, we employ an MIR imaging camera 
(MLX90640) with 24 × 32 resolution that is capable of detecting wave-
lengths between 5.5 and 14.0 µm and measuring temperatures from −40 
to 300 °C. This camera captures thermal radiation emitted by objects, 
enabling precise temperature mapping.

NIR detection
A CMOS unit paired with a 935- to 945-nm bandpass filter and lens pro-
vides precise NIR signal detection, with filter selection determined by 
the wavelength of the LED light source.

Visible and ultraviolet light detection
A CMOS unit with a 700 nm low-pass filter and lens covers an imag-
ing range from 350–1,000 nm, encompassing ultraviolet, vis-
ible and NIR spectra. LED lighting adjustment enables selective 
wavelength detection.

The lighting module is meticulously designed to support both 
reflective and fluorescent layer functionalities. For fluorescent marker 
detection, 390 nm LEDs excite the fluorescent layer, revealing marker 
information. The ultraviolet fluorescent markers enable modality 
switching for deformation, sliding and texture sensing, offering advan-
tages in three-dimensional (3D) reconstruction and sliding detection 
without relying on strict light control. When deactivated, the fluores-
cent layer becomes transparent, allowing external colour observation 
(Fig. 2c). For texture sensing, 940 nm LEDs generate a strong internal 
NIR light source, rendering the thin film opaque and enhancing surface 
texture detection (Supplementary Fig. 12). This light source also works 
in conjunction with the NIR detection unit, providing stable illumina-
tion for precise signal detection (Supplementary Note 5).

For triboelectric signal acquisition, we use an ADA4505 chip oper-
ating at a 1 kHz sampling frequency (Supplementary Table 4). The IMU 
signal acquisition utilizes MPU6050, capturing 3D orientation angles 
and acceleration data. This configuration enables comprehensive 
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Fig. 2 | Structural design and sensing mechanism. a, Sensing modalities of 
SuperTac. b, Structure of the sensing skin, imaging module and lighting module. 
c, SuperTac is in touch mode when the internal lighting module is turned on and 
in vision mode when the internal lighting module is turned off. d, Tactile data are 
captured when the sensor is in contact with an object. Shown are representative 

ultraviolet images in touch mode (top left), NIR images in touch mode (bottom 
left), RGB images in vision mode (top right) and temperature data (bottom right). 
e, Triboelectric signal acquisition mechanism. f, Object proximity sensing. 
The error bars represent the maximum and minimum values of the error (n = 5 
independent experimental repetitions per data point).
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multimodal sensing while maintaining system compactness and inte-
gration, addressing the limitations of traditional visuotactile sensors.

SuperTac demonstrates comprehensive sensing capabilities 
across multiple spectral bands and sensing modalities (Fig. 2d). In 
the ultraviolet band, fluorescent markers enable precise tracking of 
sliding and deformation through marker size and displacement meas-
urements (Supplementary Note 6, Supplementary Table 5 and Sup-
plementary Figs. 13–15). The visible spectrum provides object colour 
information upon contact, whereas the NIR band captures texture and 
contact-force data. MIR imaging enables temperature measurement, 
complemented by triboelectric signals for material identification (Fig. 
2e) and proximity sensing (Fig. 2f). Additionally, IMU-based collision 
and vibration detection further enhance the system’s multimodal 
sensing capabilities.

Performance characterization
To evaluate force and position sensing capabilities, we developed a 
testing platform incorporating an ATI Gamma sensor as the ground 
truth for force measurements (Fig. 3a). The evaluation utilized 48 probe 
(Supplementary Fig. 16) designs across three geometries (U, V and poly-
gon shapes), collecting approximately 1,800 datasets per probe (Fig. 
3b). A force sensing neural network (Fig. 3c) was developed based on a 
U-Net architecture38, with ResNet48 (ref. 39) as the encoder to extract 
features from RGB deformation images captured by the sensor. A fully 
connected layer was added to output the resultant force vector, and the 
U-Net decoder generated a deformation mask. The mask was multiplied 
by the resultant vector to produce a force distribution map. The network 
was trained and evaluated using 86,440 sets of deformation data col-
lected from 48 probe types (Fig. 3d), with a uniform sampling method 
employed to ensure comprehensive coverage of the sensor surface 
and accurately assess its force sensing performance. The dataset was 
split into 70% for training and 30% for testing. Training was conducted 
on a NVIDIA A6000 graphics processing unit using the L1 loss function 
and the AdamW optimizer, with a CosineAnnealingLR scheduler. The 
network achieves a position detection mean squared error accuracy 
of 0.056 mm and a 3D force detection mean squared error accuracy of 
0.0004 N, with an overall position detection precision of around 0.4 mm 
(Fig. 3e) and a force error distribution of approximately 0.06 N (Fig. 3f), 
demonstrating robust performance across all probe types and strong 
generalizability (Supplementary Fig. 17). In addition, we conducted 
comparative experiments using ultraviolet and NIR modalities over 
80,000 contact events to evaluate force sensing accuracy. The results 
showed that NIR consistently outperformed ultraviolet markers across 
all evaluation metrics, confirming its superior accuracy and stability 
in force sensing tasks (Supplementary Fig. 18). For 3D reconstruction 
testing, we not only optimized the distribution of markers in simula-
tions but also evaluated the reconstruction accuracy of different algo-
rithms. Through testing, our proposed method achieved an average 
root mean squared error of 0.0892 and a mean absolute error of 0.0375 
(Supplementary Note 6). For surface characterization, a long short-term 
memory (LSTM) algorithm (Supplementary Note 7 and Supplementary 
Fig. 19) processed 150 sets of sliding and non-sliding data, achieving 97% 
accuracy in sliding detection. Colour classification was evaluated across 
six different colours, achieving 100% accuracy. Texture recognition 
was tested on six 3D-printed textures (Supplementary Fig. 20) and six 
common textures (Supplementary Fig. 21), demonstrating 98% accu-
racy (Fig. 3g,j). Additionally, the sensor exhibited robust capabilities in 
Braille sensing, as well as the perception of 0.07-mm-thick hair strands 
(Supplementary Fig. 22). To verify the accuracy of Braille recognition, 
we collected 200 samples for each of the 26 Braille letters, achieving 
a classification accuracy of 100%, which demonstrates the sensor’s 
exceptional texture sensing capabilities (Supplementary Fig. 23).

Temperature detection was validated across a range of 0–90 °C, 
limited by the thermal resistance of the TPU film (Supplementary Figs. 
24 and 25 and Supplementary Videos 4 and 5). The SuperTac can achieve 

a temperature sensing accuracy of 0.25 °C after testing and calibration 
and remains unaffected by ambient temperature variations within the 
28–50 °C range. Heating induced by ultraviolet radiation causes only 
a minimal surface temperature change of 0.2 °C, ensuring negligible 
interference with MIR-based temperature measurements (Supplemen-
tary Note 8 and Supplementary Fig. 26).

The triboelectric sensing capability of SuperTac was compre-
hensively evaluated under diverse conditions, including ten different 
materials, seven contact-surface geometries, 15 contact speeds, three 
contact angles and five pressure levels (Supplementary Note 9 and 
Supplementary Figs. 27–29). Controlled experiments demonstrated 
robust classification performance in all situations, achieving 97% 
accuracy for contact angles, 99% accuracy for pressure levels, 96% 
accuracy for velocities and 95% accuracy for contact shapes, with an 
overall 95% accuracy across all conditions (Fig. 3k). A triboelectric 
signal acquisition platform was developed (Supplementary Fig. 30) 
to facilitate detailed signal analysis, and a 3.8 h durability test revealed 
consistently stable signal output (Supplementary Fig. 31). Further-
more, by employing advanced signal-filtering techniques and neural 
network classification, the triboelectric signals enabled proximity 
sensing within a range of 0–15 cm, depending on the material proper-
ties, underscoring the versatility and reliability of SuperTac in diverse 
sensing applications.

Vibration detection capabilities were validated using a custom 
platform (Supplementary Fig. 32), demonstrating accurate frequency 
recognition within the range of 0–60 Hz (Fig. 3i and Supplementary 
Fig. 33). For collision detection, we analysed 150 sets of IMU signals 
from collision and non-collision scenarios, achieving 94% classification 
accuracy (Fig. 3l and Supplementary Fig. 34).

Integration and applications
Robotic hand implementation
To demonstrate SuperTac’s capabilities, we integrated it into two 
robotic platforms: a three-finger dexterous hand and a parallel grip-
per (Supplementary Video 6 and Supplementary Figs. 35 and 36). The 
dexterous hand features ten degrees of freedom with servo motor 
actuation at each joint. SuperTac is mounted in the palm, enabling 
comprehensive object-property sensing during grasping opera-
tions. For the parallel gripper configuration, SuperTac is installed on 
one side, facilitating stable object manipulation through integrated 
visual detection, contact force sensing, slip detection and collision 
detection algorithms.

Multimodal tactile language model
To enable advanced tactile information processing, we developed 
DOVE (Supplementary Note 10 and Supplementary Fig. 37), a multi-
modal tactile language model built on a pre-trained large language 
model (Fig. 4d). DOVE fuses multimodal tactile inputs and language to 
characterize object properties, reason over tactile differences between 
object pairs and infer an object’s type and function. Specifically, DOVE 
can process triboelectric, temperature, colour and texture inputs to 
generate rich descriptions such as “yellow, room temperature, with a 
textured, raised, metallic surface” (Fig. 4d and Supplementary Video 
7). When it receives tactile feedback from two objects, DOVE produces 
relational reasoning statements (for example, “The two objects share 
similar colours, temperatures and textures, but differ in material, so 
they are different.”). DOVE also associates tactile impressions with 
semantic knowledge for reasoning (for example, “PET is commonly 
used for food containers. Its yellow colour suggests visibility or citrus-
related items. This is probably a beverage bottle used for daily consump-
tion.”). To explore the impact of network structure on the perception 
capabilities of DOVE, we further investigated the effects of the hidden 
dimensions and activation functions in the projection layer. The experi-
mental results demonstrated that changes in hidden dimensions had 
minimal impact on performance, whereas the Gaussian error linear 
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Fig. 3 | Perception and classification algorithm design. a, Force sensing data 
acquisition platform. b, We test the force sensing accuracy of 48 probes in U, 
V and polygonal shapes. c, Schematic of the force sensing network. 3x3 Conv, 
3 × 3 convolutional layer.d, Graph showing the number of datasets in which 
various forces were applied. In total, we collected 86,440 datasets for contact 
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accuracy. g, Images showing the textures of 12 different surfaces. h, Triboelectric 
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detected by the SuperTac. j, Texture classification confusion matrix. k, Material 
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ABS, acrylonitrile butadiene styrene; PET, polyethylene terephthalate;  
PLA, polylactic acid.
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Fig. 4 | Design and application of the tactile language model. a, Schematic 
of the integration of SuperTac with DOVE in HRI. b, Stable object grasping by 
combining external vision with contact, slide and collision sensing. c, Fusion of 
material, texture, colour and temperature information, combined with a tactile 
language model for tactile information understanding. d, Schematic of our 
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unit activation function notably outperformed the rectified linear 
unit function, ensuring effective alignment and fusion of multimodal 
features (Supplementary Note 11 and Supplementary Table 6).

Enhanced HRI
We further demonstrated the system’s HRI capabilities across four 
experimental scenarios (Fig. 4e, Supplementary Notes 12–14, Sup-
plementary Table 7, Supplementary Videos 8–12 and Supplementary 
Figs. 38 and 39). In the first scenario, the system identifies and selects a 
metallic cup with a smooth surface. In the second scenario, the system 
follows user instructions to locate a cup with specific characteristics 
(that is, lettering and a rough surface). GPT-4o orchestrates the interac-
tion by directing visual identification and physical interaction with each 
cup, whereas DOVE processes the tactile feedback. In the third scenario, 
DOVE receives a reference object via touch and retrieves another that 
matches a specified colour by reasoning jointly over texture and colour 
cues. In the fourth scenario, DOVE infers cluttered tabletop objects’ 
functions as reusable, recyclable or general waste based on tactile 
feedback and generates natural language justifications for each deci-
sion. The system continues evaluation until it finds a matching object 
or determines that no suitable matches exist.

The integration of comprehensive tactile sensing, language-
based interpretation and visual processing represents a substantial 
advancement towards human-like robotic perception and interac-
tion. By enabling robots to process and respond to multimodal sen-
sory information in a manner akin to human perceptual capabilities, 
this approach paves the way for more intuitive and effective human–
robot collaboration.

Conclusions
Traditional e-skin-based tactile sensors continue to face notable chal-
lenges in resolution, homogeneity and stability. Although visuotactile 
sensors offer promising solutions through advanced imaging tech-
niques, their multimodal sensing capabilities have been limited by 
constraints in sensing skin design and imaging bandwidth. Our work 
addresses these fundamental limitations through a light-field-mod-
ulated sensing skin combined with multispectral imaging, enabling 
high-resolution multimodal sensing. The sensor achieves remarkable 
performance metrics, including 98% texture detection accuracy, 0.06 N 
3D force detection accuracy in the NIR band, 97% sliding detection 
accuracy in the ultraviolet band and 100% colour detection accuracy 
in the visible band. By incorporating non-imaging perception inspired 
by pigeon magnetic field sensing, we further extend the sensor’s capa-
bilities to material detection (95% accuracy), collision detection (94% 
accuracy) and vibration detection (0–60 Hz range), all without com-
promising imaging quality or introducing electrode crosstalk issues.

The interpretation of heterogeneous tactile information through 
foundation models presents unique challenges. DOVE—our multi-
modal tactile language model—addresses these challenges through 
a unified input representation approach, which enhances scalabil-
ity and adaptability across diverse sensor configurations. However, 
this approach reveals important trade-offs. Although transforming 
sequential data into images has proven effective for certain tasks, it 
may not fully capture the temporal characteristics inherent in tactile 
signals. Alternative approaches, such as time-series encoders, might 
better preserve temporal features but reintroduce challenges related 
to embedding heterogeneity. Striking the optimal balance between 
scalability and effectiveness remains a crucial area for future research 
and practical implementation.

Several promising directions have emerged for extending SuperT-
ac’s capabilities. Miniaturization of the sensor could enable fingertip 
installation, greatly advancing robotic in-hand manipulation capa-
bilities. Additionally, DOVE’s modality-agnostic framework, which 
converts various input modalities into image representations, could 
be adapted for different sensor configurations and applications. Future 

work will focus on advancing low-power decoding chips and exploring 
highly integrated packaging solutions to further reduce the sensor’s 
size while addressing challenges in heat dissipation and system stabil-
ity. Work will additionally focus on optimizing DOVE across diverse sen-
sor designs and application-specific datasets, to enhance its versatility 
and robustness. These developments aim to bridge the gap between 
robotic and human-like perception capabilities, paving the way for 
more intuitive and effective HRI.

Methods
All of the experiments were conducted using Python 3.8.20 in a Conda 
environment. All of the analyses were performed on Ubuntu 20.04 
with four NVIDIA RTX A6000 graphics processing units (CUDA 11.3).

Fabrication of the sensing skin
The sensing skin was fabricated using a multi-step process (Supplemen-
tary Fig. 40, Supplementary Note 15 and Supplementary Table 8). First, 
transparent silicone was mixed and poured into acrylic moulds, which 
provided a smoother surface finish compared with 3D-printed moulds. 
After heating, the silicone was cured to form the supporting layer. For 
the fluorescent layer, a scraping method was employed, using a steel 
mesh as a mask to spread fluorescent ink over the surface. To prevent 
unevenness caused by ink buildup, an additional layer of transparent 
silicone was applied using spin-coating. The reflective layer was created 
by mixing silver powder with transparent silicone, which was then spin-
coated onto the fluorescent layer. For the conductive layer, conductive 
ink was screen printed onto a TPU surface and heated for 60 min to 
complete the layer. Finally, the conductive layer was attached to the 
translucent layer, finalizing the sensing skin. Although the integration of 
fluorescent markers introduces additional complexity, the standardized 
design ensures low cost (less than US$1) and high durability. The outer 
sensing skin, made of TPU film, which is commonly used in automotive 
and smartphone protective applications, exhibits exceptional wear and 
corrosion resistance. Fluorescent markers showed no photobleaching 
after one week of continuous ultraviolet exposure, ensuring stability 
(Supplementary Fig. 41). These features demonstrate a thoughtful 
balance between functional enhancements and cost-effectiveness.

Assembly and connection of SuperTac
The sensor was designed with a modular structure (Supplementary 
Note 16 and Supplementary Fig. 42) divided into three sections: upper, 
middle and lower. The upper and lower sections are made of aluminium 
alloy for high heat resistance and mechanical strength, whereas the 
middle section is constructed from transparent acrylic to ensure even 
diffusion of LED light onto the sensing skin. Threaded joints are used to 
connect the modules, allowing for easy disassembly. To address poten-
tial overheating during prolonged full-load operation, the SuperTac 
system incorporates a detachable magnetic cooling fan powered via 
contact-based pogo pins and aligned using N52-grade magnets, ena-
bling quick removal for maintenance, and effectively reducing the 
stabilized temperature by 18.4 °C during extended high-load operation, 
as demonstrated through time–temperature comparison experiments 
(Supplementary Note 17 and Supplementary Figs. 43–46).

The SuperTac system adopts a USB 3.1 Gen 1 protocol for data com-
munication, facilitating robust and high-speed transmission across 
all sensing and communication modules (Supplementary Note 18 
and Supplementary Fig. 47). To ensure stable operation, the system 
is equipped with an optimized power architecture that supports all 
modules under full-load conditions, with a maximum power consump-
tion of 4.5 W (Supplementary Note 19 and Supplementary Figs. 48 and 
49). These design choices enhance the practicality and scalability of the 
SuperTac system in real-world applications. In addition, we designed a 
user interface that simultaneously displays signals including MIR, NIR, 
visible and ultraviolet light, triboelectric signals, posture information 
and acceleration data (Supplementary Fig. 50).
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Image classification network design and training
For image-based tactile inputs, a ResNet18 backbone was cascaded 
with a multilayer perceptron (MLP) to extract task-relevant features 
and perform classification. The model processed batches of 128 × 128 
visuotactile images, generating intermediate feature maps through 
ResNet, which were further processed via max-pooling and passed 
through the MLP classifier. The network was trained end to end for four 
tasks: colour, texture, temperature and material classification. Tribo-
electric signals were filtered to remove high-frequency components 
and visualized as curves, which were stored as images. The dataset was 
split into 80% for training, 10% for validation and 10% for testing. The 
model was trained using the Adam optimizer with a learning rate of 
1 × 10−4 and a batch size of 128, alongside a step scheduler that reduced 
the learning rate by 0.9 every ten validation steps.

Sequential signal classification network design and training
For sequential inputs (for example, IMU data and visuotactile videos), 
an LSTM network was employed as the backbone to process the tem-
poral flow of information (Supplementary Fig. 19). Low-dimensional 
data, such as IMU readings, were processed using a two-layer MLP, 
whereas spatial–structural data, such as videos, were processed using a 
pre-trained ResNet18. The LSTM updated its hidden state sequentially 
and output task-oriented information, which was passed through an 
MLP classifier for final prediction. For IMU data, the model was trained 
end to end for collision detection, whereas for sliding detection, only 
the LSTM and MLP classifiers were trained. The dataset was split into 
80% for training, 10% for validation and 10% for testing. Training used 
the AdamW optimizer with a learning rate of 1 × 10−3 and a batch size 
of 128, alongside a step-based learning-rate scheduler. After testing, 
the classification algorithms based on ResNet and LSTM have a single 
prediction time within 6 ms, meeting real-time requirements (Sup-
plementary Note 20 and Supplementary Table 9).

Effects of air pressure and object hardness on sensor 
perception
We investigated the impact of internal air pressure on the tactile sensing 
performance of the sensor, focusing on its ability to perceive flexible 
objects and its accuracy in force sensing, texture recognition and slid-
ing detection. During testing, five pressure levels (1.2, 3.0, 4.0, 6.0 and 
7.0 kPa) were selected for the force sensing experiments, whereas three 
pressure levels (3.0, 5.0 and 7.0 kPa) were chosen for the texture rec-
ognition and sliding detection experiments. The experimental results 
demonstrated that variations in air pressure had minimal impact on the 
accuracy of force sensing, texture recognition and sliding detection. 
Notably, texture recognition and sliding detection achieved 100% accu-
racy across all pressure conditions. A slight decrease in force sensing 
accuracy was observed at high pressure (7 kPa), but it remained within 
an acceptable range. Overall, the system exhibited stable and reliable 
performance under varying pressure conditions (Supplementary Note 
21 and Supplementary Figs. 51 and 52).

Extensive testing of the SuperTac system was conducted on soft 
and liquid-containing objects, including probes made of diverse mate-
rials (polylactic acid, cloth, plastic, paper, polyethylene terephthalate 
or silicone) and objects with flexible or liquid-containing textures. 
Although the softness of objects slightly impacted force sensing accu-
racy, the performance significantly improved after supplementing 
the dataset with 500 flexible object samples (Supplementary Note 22 
and Supplementary Fig. 53). The system achieved 100% accuracy in 
texture recognition and sliding detection (Supplementary Figs. 54 and 
55). Furthermore, the inflatable structure of SuperTac demonstrated 
superior texture and contour sensing capabilities compared with Gel-
Sight Mini, highlighting its advantages in handling complex surfaces 
(Supplementary Fig. 56). Additionally, simulation results using finite 
element analysis revealed that the system maintains reliable contour 
recognition for objects with elastic moduli above 1 MPa, providing 

theoretical guidance for practical applications (Supplementary Note 
23 and Supplementary Fig. 57).

Tactile language model design and training
To enable comprehensive understanding and reasoning over multi-
modal tactile data and language, a large tactile language model was 
trained on a processed dataset integrating colour, texture, temperature 
and triboelectric data, augmented with synthetic tactile language 
question and answer pairs (Supplementary Figs. 37 and 39). The train-
ing and testing data for the SuperTac system were constructed using 
tactile data spanning six colours, three temperature conditions, ten 
material types and six surface textures, with multimodal question and 
answer pairs generated by GPT-4 and rule-based scripts to integrate 
tactile information with natural language descriptions (Supplementary 
Note 24). The training involved three stages: encoder pre-training, 
embedding alignment and model fine-tuning. Pre-trained contrastive 
language–image pre-training models40 were used to extract image 
features, with an MLP classifier attached for end-to-end classification. 
After fine-tuning, the classifiers were removed and a projection layer 
was added for embedding alignment. Finally, the projection layer 
and language backbone (Vicuna41) were fine-tuned using LoRA42. The 
total parameters of the four contrastive language–image pre-training 
encoders and language backbone reached 8.6 billion. Training used the 
AdamW optimizer with a cosine annealing schedule, achieving robust 
performance across all modalities (Supplementary Note 25 and Sup-
plementary Tables 10–12).

Software availability
All of the experiments were conducted using Python 3.8.20 in a Conda 
environment. All of the analyses were performed on Ubuntu 20.04 
with four NVIDIA RTX A6000 graphics processing units (CUDA 11.3).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available 
at https://cloud.tsinghua.edu.cn/d/f6abfcf5845a42018e2a/
files/?p = %2FData%2Fdataset.zip.

Code availability
We have open sourced the codebase for DOVE at https://github.com/
wut19/DOVE. Future updates and new releases will also be available 
at this link.
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